
A CPU-FPGA Holistic Source-To-Source Compilation

Approach for Partitioning and Optimizing C/C++ Applications

Tiago Santos, João Bispo, João M. P. Cardoso

Faculty of Engineering of the University of Porto and INESC-TEC, Porto, Portugal

{tiagolascasas, jbispo, jmpc}@fe.up.pt

Context & Motivation Our Toolchain

From C/C++ to a Task Graph Holistic Partitioning and Optimization

Tiago Santos is supported by PhD grant 2021.07324.BD, financed by

Fundação para a Ciência e Tecnologia (FCT)

void foo(int A[100], int B[100]){

 for (int i = 0; i < 100; i++)

 for (int j = 0; j < i; j++)

 A[i] = A[i] + B[j];

}

void bar(int A[100], int B[100]) {

 for (int i = 0; i < 100; i++)

 A[i] = A[i] + B[i];

}

void bar(int A[100], int B[100]) {

#pragma HLS array_partition variable=A complete

 for (int i = 0; i < 100; i++) {

#pragma HLS unroll factor=20

#pragma HLS pipeline

 A[i] = A[i] + B[i];

 }

}

How do we determine the regions for offloading?

From offloading hotspots to offloading regions,

augmenting the potential for optimizations that

increase the overall performance!

How to select regions with the overall view of

impactful code transformations and optimizations?

1. HW/SW Partitioning 2. Code Optimizations for HLS

 Initial clusters based on hotspot tasks,

measured through CPU profiling

 Each cluster is then increasingly expand-

ed with promising tasks from outside the

cluster, in a single pass

 Each cluster then offers several design

decisions, with optimizations enabled

at multiple levels:

A: intra-task optim. (e.g., loop unrolling)

B: inter-task optim. (e.g., task fusion)

C: intra-cluster optim. (e.g., dataflow pat-

terns)

D: inter-cluster optim. (e.g., FIFO commu-

nication from the CPU to the FPGA)

1. Preprocessing Transformations 2. Task Graph Generation

void F1(int *A, int *B, int *C, int *D) {

 F2(A, B);

 for (int i = 0; i < 100; i++) {

 F3(A, C[i]);

 F4(B, C[i]);

 }

 for (int i = 0; i < 500; i++) {

 F5(A, B);

 F6(A);

 }

 F7(A, B, D);

}

The task graph has a 1:1 mapping between a

task and a function, which simplifies code

generation!

Code Preprocessing Transformations

Test Environment Setup

Current Status Task Graph Generation

Characterizing Task Graphs

Current Status Generating Hotspot-based Clusters

Generating Different Optim. Designs

Design Selection and Refinement

Target Evaluation

Platform:

Zynq UltraScale+

MPSoC ZCU102

Evaluation Kit

Current Progress

There is already extensive research about each process, when looked at in isolation. But what if they

could be a single process, enriched by a holistic view of the application? We posit the question:

Given a heterogeneous CPU-FPGA system, does a combined partitioning and optimization scheme for

an application achieve higher speedups than those achieved by applying both processes independently?

Can the whole be more than the sum of its parts?

Motivating Example

• Converting N-dimensional arrays into 1D

• Outlining of every computation into individual

functions, so that functions either only have

computations, or only have calls to other

functions

• Ensuring all functions return void

• Ensuring all branching evaluations are

performed over variables, and not expressions

• Constant folding and propagation

32nd International Conference on Parallel Architectures and Compilation Techniques (PACT 2023)

October 21-25, Vienna, Austria

