A CPU-FPGA Holistic Source-To-Source Compilation

Approach for Partitioning and Optimizing C/C++ Applications

32nd International Conference on Parallel Architectures and Compilation Techniques (PACT 2023)

October 21-25, Vienna, Austria

Tiago Santos, Joao Bispo, Joao M. P. Cardoso

[APORTO

FEUP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO

W SPeCS

Special-Purpose Computing
Systems, languages and tools

INESC

Faculty of Engineering of the University of Porto and INESC-TEC, Porto, Portugal
{tiagolascasas, jbispo, jmpc}@fe.up.pt

Our Toolchain

Context & Motivation

1. HW/SW Partitioning

2. Code Optimizations for HLS

++ ++ -to- '
How do we determine the regions for offloading? Clava G/C++ to G/C++ Source-to-Source Compiler
From offloading hotspots to offloading regions, . . . Clava Core APls
. . L How to select regions with the overall view of C/C++ A A A A
augmenting the potential for optimizations that o
. impactful code transformations and optimizations? Application \ 4 N—Y \ 4 \ 4
increase the overall performance! Code 5 | Task Partitioning & Task
reprocessing N .
void foo(int A[l@@], int B[l@@]){ TranSformS —) Graph —> OptImIZ.atlon (—) Att”bute
o : : \ . , Generator Engine Estimator
for (int i = 0; i < 100; i++) J|void bar(int A[100], int B[100]) {
L 4
for (int j = 0; j < i; j++) ..’ #pragma HLS array_partition variable=A complete
A[i] = A[i] + B[]j]; ;’ for (int 1 = 0; i < 100; i++) { ¢ ¢
o #pragma HLS unroll factor=20 o
EER ~:§;)) AN (3/C}+4- C)pt”T"ZEKj
oid bar(int A[100], int B[1@0]) { \z\ #pragma HLS pipeline CPU code C/C++
for (int i = @; i < 100; i++) o A[i] = A[i] + B[i]; Executable(+ OpenCL = FPGA code
A[i] = A[i] + B[i]; } binary
HE }
HE BB EE S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER B v v
There is already extensive research about each process, when looked at in isolation. But what if they
could be a single process, enriched by a holistic view of the application? We posit the question: FPGA < v+ € gcc Vitis HLS
bitstream
Vitis | |
Given a heterogeneous CPU-FPGA system, does a combined partitioning and optimization scheme for
an application achieve higher speedups than those achieved by applying both processes independently? Xilinx tools | |Clava | |Clava extensions = Application Source Code | |Final artifacts

Can the whole be more than the sum of its parts?

1. Preprocessing Transformations

2. Task Graph Generation

void F1(int *A, int *B, int *C, int *D) {

. Initial clusters based on hotspot tasks,
measured through CPU profiling

SW Host

. Constant folding and propagation Pl B
\ y for (int i = @; i < 100; i++) { . Each cluster is then increasingly expand- U [E e
r - - . : w F3(A, C[i]); - . -
. Converting N-dimensional arrays into 1D F4(B, C[i]); ed W'th.PrOm.'S'”g tasks from outside the \‘/ l f\,
: ’) cluster, in a single pass T iy 713 T14
. Ensuring all functions return void R e R "s\/ T
N o FS(A: B); . - E
F6(A); . Each cluster then offers several design | : 15

g A ’ . . . « e e |-
. Ensuring all branching evaluations are } decisions, with optimizations enabled 1>

performed over variables, and not expressions F7(4, B, D) at multiple levels:
N\ J)
e N F1 . . . HW Cluster C

. Outlining of every computation into individual A: intra-task optim. (e.g., loop unrolling) o _

functions, so that functions either only have B: inter-task optim. (e.g., task fusion) = :

computations, or only have calls to other o C: intra-cluster optim. (e.g., dataflow pat- LI A
_ functions . terns) 1

D: inter-cluster optim. (e.g., FIFO commu-
: FL1 " T10
The task graph has a 1:1 mapping between a nication from the CPU to the FPGA)
task and a function, which simplifies code
generation!

Motivating Example

edge_ detect
smooth
6 [Code Preprocessing Transformations DoneJ
i o " Latne Spesiup o .
(1048576} | atas72ey | O accling [Test Environment Setup DOHEJ
output/ smooth, vert
output_image (3) | rgb_to grayscale set_filter
{1048576} 7.0X [T -
ask Graph Generation Done]
image_gray/ /o or fiker (1) m Latency Speedup vs. P
input_image (1) [“eagy " [r3gy temp_buf/ everything-to-CPU
{1048576} output_image |(3) b l . o
mage. aray! (1048576} smooth, vert, horiz aseline Characterizing Task Graphs
output_irﬁage (3) | smooth_filter set_filter 7.3X .
{1048576) ' Target Evaluation
~ output/ filter (2) \filter (1) Platform: Generating HOtSpOt-baSEd ClLIStEI‘S
input_image (1)
{1048576) 136} 136}
All except smooth Zynq UltraScale+
¥
vert_filter input(ilijrtrﬁ):ge (1) | set_filter MPSOC ZCU1°2 [Generatlng leferent optlm. DESlgns TBD]
(RABSTE) Evaluation Kit
output (3)\ /filter (2)
{1048576} {36} . . .
o All except smooth, [De5|gn Selection and Refinement TBD]
1048576} T IS vert and horiz fused 24.9X
temp_buf (2)
‘ AA%%} Tiago Santos is supported by PhD grant 2021.07324.BD, financed by
SN Fundagao para a Ciéncia e Tecnologia (FCT)
OX 5X 10X 15X 20X 25X 30X

